Two-dimensional higher-derivative gravity and conformal transformations

نویسنده

  • Salvatore Mignemi
چکیده

We consider the lagrangian L = F (R) in classical (=non-quantized) two-dimensional fourth-order gravity and give new relations to Einstein’s theory with a non-minimally coupled scalar field. We distinguish between scale-invariant lagrangians and scale-invariant field equations. L is scale-invariant for F = c1R k+1 and a divergence for F = c2R. The field equation is scale-invariant not only for the sum of them, but also for F = R lnR. We prove this to be the only exception and show in which sense it is the limit of 1 kR k+1 as k → 0. More generally: Let H be a divergence and F a scale-invariant lagrangian, then L = H lnF has a scale-invariant field equation. Further, we comment on the known generalized Birkhoff theorem and exact solutions including black holes. PACS numbers: 04.20, 04.50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Infinitesimal Conformal Transformations of the Tangent Bundles with the Generalized Metric

Let  be an n-dimensional Riemannian manifold, and  be its tangent bundle with the lift metric. Then every infinitesimal fiber-preserving conformal transformation  induces an infinitesimal homothetic transformation on .  Furthermore,  the correspondence   gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations on  onto the Lie algebra of infinitesimal ...

متن کامل

0 A note on Weyl transformations in two - dimensional dilaton gravity ∗

We discuss Weyl (conformal) transformations in two-dimensional matterless dilaton gravity. We argue that both classical and quantum dilaton gravity theories are invariant under Weyl transformations. PACS number(s): 04.60.Kz, 04.20.Cv

متن کامل

Towards a Holographic Dual of SQCD: Holographic Anomalies and Higher Derivative Gravity

We consider the holographic dual of SQCD in the conformal phase. It is based on a higher derivative gravity theory, which ensures the correct field theory anomalies. This is then related to a six dimensional gravity theory via S compactification. Some speculations are then made about the correspondence, Seiberg duality, and the nature of confinement from a holographic perspective.

متن کامل

Biharmonic Conformal Field Theories

The main result of this paper is the construction of a conformally covariant operator in two dimensions acting on scalar fields and containing fourth order derivatives. In this way it is possible to derive a class of Lagrangians invariant under conformal transformations. They define conformal field theories satisfying equations of the biharmonic type. Two kinds of these biharmonic field theorie...

متن کامل

Black Hole Solutions in Four-dimensional Topological Gravity

We study spherically symmetric solutions of a four-dimensional theory of gravity with a topological action, which was constructed as a Yang-Mills theory of the Poincaré group and can be considered a generalization to higher dimensions of well-known two-dimensional models. We also discuss the perturbative degrees of freedom and the properties of the theory under conformal transformations.

متن کامل

Holographic Renormalization Group Structure in Higher-Derivative Gravity

Classical higher-derivative gravity is investigated in the context of the holographic renormalization group (RG). We parametrize the Euclidean time such that one step of time evolution in (d + 1)-dimensional bulk gravity can be directly interpreted as that of block spin transformation of the d-dimensional boundary field theory. This parametrization simplifies the analysis of the holographic RG ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995